
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2006; 52:591–615
Published online 16 February 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.1189

Discretization and parallel performance of an unstructured
�nite volume Navier–Stokes solver

S. A. Mohsen Karimian‡ and Anthony G. Straatman∗;†

Department of Mechanical and Materials Engineering; The University of Western Ontario;
London; Ont.; Canada N6A 5B9

SUMMARY

The discretization, parallelization and performance of an implicit, unstructured, time-dependent Compu-
tational Fluid Dynamics code is described. A detailed description is provided of the improvements made
on second-order accurate tools for spatial interpolation and gradient calculation to discretize the Navier–
Stokes equations in an unstructured framework. The main goal in the development of the discretization
tools was to ensure a scalable and accurate parallel code. The performance of the discretization tools has
been validated using standard bench-mark problems for non-uniform, non-orthogonal grids. Paralleliza-
tion of the code is done within the PETSc framework using a single-program-multiple-data (SPMD)
parallelization model. The resulting parallel code is shown to scale linearly within the limit of the
available number of processors. Copyright ? 2006 John Wiley & Sons, Ltd.

KEY WORDS: �nite-volume method; parallel computing; unstructured grid; incompressible �ow

1. INTRODUCTION

With the ever-increasing development of computer hardware and the availability of parallel
computing platforms, scientists and engineers are able to investigate more and more complex
problems in solid and �uid mechanics. In thermo�uids, scientists are being called upon to
solve large-scale problems involving single- and multi-phase �ows, turbulence, heat trans-
fer and chemical reaction for the purpose of design, development and process control. As
such, continued development of physical models, algorithms and parallelization techniques is
of immediate relevance and application in science and engineering. To this end, the present
paper describes a three-dimensional Computational Fluid Dynamics (CFD) code developed

∗Correspondence to: A. G. Straatman, Department of Mechanical and Materials Engineering, The University of
Western Ontario, London, Ont., Canada N6A 5B9.

†E-mail: astraatman@eng.uwo.ca
‡E-mail: skarimia@uwo.ca

Contract=grant sponsor: Natural Science and Engineering Research Council
Contract=grant sponsor: SHARCNET

Received 27 May 2005
Revised 3 October 2005

Copyright ? 2006 John Wiley & Sons, Ltd. Accepted 26 December 2005



592 S. A. M. KARIMIAN AND A. G. STRAATMAN

for use in a parallel computing environment. The methodologies used for the discretiza-
tion and parallelization are chosen=devised on the basis that the code is to be used to in-
vestigate engineering �ows using a transient Reynolds-averaged-Navier–Stokes (RANS) or
VeryLarge-Eddy-Simulation (VLES) approach. The present CFD algorithm is based on an
unstructured �nite-volume discretization and coded to operate in a distributed-memory envi-
ronment such as that provided by Shared Hierarchical Academic Research Computing Network
(SHARCNET) [1]. The main focus of the work described herein is on basic elements of the
discretization that a�ect the parallel performance and on a procedure that enhances the paral-
lel performance of the resulting code. A brief review is given to describe the origins of the
methods proposed for the CFD algorithm.
Three main practices are currently used for solving the governing transport equations for

�uid and energy �ow in multi-purpose CFD codes: �nite-element methods, �nite-volume meth-
ods, and control-volume based �nite element methods (CVFEM), which is a combination of
the two former methods. CVFEM [2, 3] use vertex-centred data structures and have the �ex-
ibility of the �nite-element formulation for discretization on unstructured grids. Therefore,
most of the legacy unstructured CFD codes that have been parallelized implement CVFEM.
Examples include Tai et al. [4], FUN3D [5, 6] (parallelized by Gropp et al. [7]) and TAU
[8] (parallelized as a part of MEGAFLOW [9]), among many others. Recent e�orts also
describe the implementation of CVFEM and vertex-centred data structures in parallel unstruc-
tured CFD codes, e.g. Reference [10]. In terms of basic structure, two main factors distinguish
the CVFEM methods from classical �nite-volume methods: (1) In CVFEM, the �nite-volume
database for which the linear system is constructed and the actual geometric (�nite-element
mesh) database used to construct the linear system are di�erent and hence need to be managed
in domain decomposition [11] and; (2) The computational molecule resulting from CVFEM
is generally larger than that resulting from classical FV methods. A computational molecule,
for a given control volume (P), is a group of control volumes in the geometric vicinity of
the control volume (P), including itself, whose implicit coe�cient in the discrete form of the
general transport equation for the control volume (P) is non-zero. The size of the computa-
tional molecule is an important parameter in CFD in general, since it a�ects the sparsity of
the matrix system that needs to be solved. In parallel coding, the computational molecule is
even more important because it a�ects the amount of overlap required between sub-domains
to ensure proper communication between processors. Classical �nite-volume (FV) methods
have a relatively simple data structure and smaller computational molecule and are a suit-
able choice for parallel unstructured implicit CFD codes, e.g. Cobalt [12]. However, there are
fewer parallel unstructured CFD codes that implement classical �nite-volume methods, due
partially to di�culties that arise with FV methods in interpolation and implicit gradient �eld
generation for the primitive variables in the absence of line structure. These basic building
blocks of a CFD algorithm a�ect di�usion and convection modelling, source term evaluation,
and have an impact on the e�ciency of the resulting parallel algorithm, which is of speci�c
interest here. To achieve the best scalability in the parallelization and minimal communica-
tion, the interpolation techniques that are used to calculate the value of variables at integration
points must be as local as possible. In addition, to preserve memory and to minimize parallel
communication, methods are required that do not rely on a large amount of data from the
previous iteration or time-step.
Cobalt [12] generated an implicit gradient term using a least squares method to obtain

weighting coe�cients for all required nodes. This method requires a QR factorization and a

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



A PARALLEL UNSTRUCTURED NAVIER–STOKES SOLVER 593

local neighbour search in each control volume and leads to a large computational molecule
with the same unfavourable features mentioned above for CVFEM. Moreover, the least squares
method is not second-order and is a grid-oriented method and, therefore, tends to be unsta-
ble for grids with high aspect ratio. In the method suggested by Lien [13], an arti�cial line
structure is generated by determining the gradient vector at each control surface based on
the values of the variable at the centre of straddling control-volumes and the vertices of the
control surface. This method also requires a local neighbour search, which is an expensive pro-
cess, particularly in three dimensions, and generates a large arbitrary computational molecule,
leading to the same problems mentioned above. Demird�zi�c and Muzaferija [14] proposed a
second-order polyhedral approach with a compact stencil to overcome the problem with the
implicit gradient �eld faced in the FV method. Their method was followed by Mathur and
Murthy [15] and Basara [16], who proposed a simpler version which was not exactly second-
order for highly non-uniform grids. Their method is based on a deferred-correction technique
with three phases: implicit �ux calculation, linear system solution and gradient reconstruction.
The implementation of the method in a parallel code is straightforward, with one exception:
the second-order implementation of the implicit gradient formula requires a correction term
with second derivatives of the primitive variables that in turn requires expensive calculations
and, even worse, an increase in the communication overhead of three times in the gradient
reconstruction phase. In this paper, an equally accurate and stable approach is proposed that
maintains second-order accuracy and does not require the second derivative �eld.
Parallelization of the present CFD algorithm is carried out using a single-program-multiple-

data (SPMD) parallelization model. A message passing method is suitable for a cluster of
distributed-memory high performance computers, such as the environment described above.
The parallel library PETSc [17] is used to obtain parallel tools for the low-level distributed data
structures and message passing and for high-level solvers. The concept of inexact Newton–
Krylov method has been adopted in the non-linear iteration of each time-step to speed up the
linearization process.
The remainder of the paper describes the unique discretization and parallelization aspects

of the proposed CFD code. The acronym chosen for the code is ParTISUN: Parallel Time-
accurate Implicit Solver for Unstructured Navier–Stokes. The paper is organized such that the
mathematical formulation is given �rst, followed by the discretization details and the paral-
lelization of the algorithm. Emphasis is placed on the novelty developed in the discretization
section. A �nal section provides validation for the code and describes the computational e�-
ciency of the parallel algorithm.

2. MATHEMATICAL FORMULATION

Consider an arbitrary �xed control volume �⊂R3, of volume V and a piecewise smooth
boundary @�, with unit normal surface vector n̂ pointing outwards, occupied by continuum
(in our case a �uid). The conservation of mass, linear momentum and thermal energy are used
in their integral form. To complete the formulation, we assume an incompressible Newtonian
�uid and use the constitutive equations

�=const:; e= cpT (1)

where � is the density, e is the speci�c energy and T is the absolute temperature of the �uid.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



594 S. A. M. KARIMIAN AND A. G. STRAATMAN

Substitution of the constitutive equations into the integral governing equations gives the set
of equations that are solved in the present work

∫
@�
�V · n̂ dS=0 (2)

∫
�
�@tV dV +

∫
@�
n̂ · (�VV) dS −

∫
@�
n̂ · (�∇V) dS=−

∫
@�
Pn̂ dS (3)

∫
�
�@tT dV +

∫
@�
n̂ · (�VT ) dS −

∫
@�
n̂ ·
(
k
cp

∇T
)
dS=0 (4)

where V is the velocity vector, dS is the surface di�erential, dV is the volume di�erential, �
is the viscosity, k is the heat conductivity coe�cient and cp is the speci�c heat. It is clear that
the equations for conservation of momentum and energy follow the generic transport equation

∫
�
�@t� dV +

∫
@�
n̂ · (�V�) dS −

∫
@�
n̂ · (��∇�) dS =

∫
�
QV� dV +

∫
@�
n̂ ·QS

� dS (5)

where � is the generic transport variable, �� is the coe�cient for di�usion of the generic
transport variable, QV� is the volumetric source term and Q

S
� is any additional surface term act-

ing as a source to drive �. Therefore, here and henceforth, rather than speci�cally discussing
momentum and energy equations, we simply refer to the generic transport equation (5). It
is good to mention here that the transport equations for turbulence can also be expressed
in the form of equation (5). The solution of the governing equation set requires the impo-
sition of appropriate boundary and initial conditions, as will be described for the particular
applications considered.

3. DISCRETIZATION METHOD

The coupled transport equations combined with boundary and initial conditions are solved
using �nite-volume discretization, whereby the domain of interest is divided into a number of
non-overlapping �nite-volumes 	Vi that comprise �. The transport equations are integrated
discretely over each �nite-volume, face-by-face, to form a linear system of equations (implicit
�ux calculation). The resulting linear system is solved using a preconditioned Krylov sub-
space method, e.g. BiCGSTAB [18] or GMRER [19]. Since most applications of interest are
geometrically complex, an unstructured �nite-volume framework is used. Without compromis-
ing the generality of the method, we consider the �nite-volumes to be arbitrary hexahedra;
all interpolation and numerical techniques used for this type of volume can be applied to
tetrahedra, wedges or a combination of these patterns. In many of the resulting terms, two
important discretization tools, i.e. spatial interpolation and gradient calculation, are required.
As suggested in the introduction, these basic elements of discretization are critical to the
accuracy and e�ciency of the resulting code.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



A PARALLEL UNSTRUCTURED NAVIER–STOKES SOLVER 595

3.1. Spatial interpolation

Figure 1 gives an illustration of two control volumes, p and u. For the sake of simplicity
and without losing generality, the control volumes are shown in the form of two-dimensional
quadrilaterals. In order to calculate the surface integrals in Equation (5) at each face of
the control volume, it is necessary to interpolate variables from nodes, where the solution
is obtained, to integration points. Interpolation is required to express the generic variable �
and its gradient ∇� at the integration point ip in terms of the values of the variable and
its derivatives at the centre of the control volumes p and u. The formulae for interpolation
must be implemented implicitly and then improved to the desired accuracy (if necessary) via
explicit deferred-correction [20] in the implicit �ux calculation phase.
Since symmetric formulae are most stable for interpolation, all calculations and interpola-

tions in this work include a second-order symmetric part that is basically an arithmetic average
of the variables between the nodes for the midpoint m

�som =
1
2(�p + �u) (6)

and a correction part which enhances the accuracy of the calculation to second-order for the
integration point ip, in case the midpoint does not coincide with the integration point, as
suggested by Demird�zi�c et al. [14]

�soip =�
so
m +R · (∇�som )

or

�soip =
1
2 (�p + �u) +

1
2R · (∇�p +∇�u) (7)

where R is the displacement vector of ip relative to the midpoint m (Figure 1) and the
superscript so indicates second-order. The second term in Equation (7) is always treated
explicity, whereas the �rst term is treated either implicitly or explicitly, depending on the
implementation.

ip

U

P

m D

Rn

Figure 1. Two control volumes straddling a control surface.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



596 S. A. M. KARIMIAN AND A. G. STRAATMAN

Also, one can directly use the symmetric formula suggested by Demird�zi�c et al. with two
one-sided interpolations to determine �ip for a slightly higher computational cost

�ip = 1
2 (�p + �u) +

1
2 [Rp→ip · ∇�p +Ru→ip · ∇�u] (8)

where Rp→ip and Ru→ip are displacement vectors of ip relative to p and u, respectively. These
types of interpolations give the maximum accuracy with the available information, however
Equation (7) is less likely to result in an extremal value at the integration point, compared
to Equation (8). This is because the correction term in Equation (7) is based on a symmetric
evaluation of the gradient at the midpoint, rather than averaging two one-sided evaluations
of the correction as that in Equation (8), and hence suppressing the e�ect of any extreme
change of the gradient �eld.

3.2. Gradient formulation

In the absence of line structure in an unstructured grid, discretization of di�usion terms and
every other term containing a gradient of a generic variable � requires special consideration.
An approach appropriate for arbitrary unstructured �nite-volume methods was �rst introduced
by Demird�zi�c and Muzaferija [14] and then implemented in slightly di�erent forms by Mathur
and Murthy [15] and Basara [16]. This family of methods contain an implicit part and a
deferred-correction explicit part based on the updated gradient �eld.
In order to discretize the di�usion term in the generic transport equation, Equation (5), a

semi-implicit discrete formulation for the gradient operation must be provided. Here, we follow
the approach of Demird�zi�c and Muzafarija. Referring to Figure 1, a second-order formula

∇�ip = �p − �u
D · n̂ n̂+

(
∇�ip − ∇�m ·D

D · n̂ n̂

)
(9)

is used to determine the gradient at the integration point ip, where D is displacement vector
of p relative to u,

∇�m= 1
2(∇�p +∇�u) (10)

and ∇�ip is a second-order approximation of the gradient at the integration point. Note that in
Equation (9) the denominator of the �rst term, which is treated implicitly, is smaller than its
counterpart in Reference [14] for highly non-orthogonal grids. This yields a larger diagonal
coe�cient for the matrix of the equations and hence, acts as an automatic numerical stabilizer
when dealing with skewed grids. Moreover, it is more sensible from a mathematical point of
view.
While Basara has proposed a weighted average of ∇�p and ∇�u as an approximation for

∇�ip, i.e.

∇�ip =f∇�p + (1− f)∇�u (11)

where f is an appropriate weight function, e.g. inverse distance function, and Mathur et al.
simply assumed that f=0:5, Demird�zi�c et al. have used Equation (8) to determine ∇�ip. The
last method is second-order even if the grid is highly non-uniform, i.e. when the vector R in
Figure 1 is large. However, to be able to implement this formula one needs to calculate and

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



A PARALLEL UNSTRUCTURED NAVIER–STOKES SOLVER 597

save the second derivatives, ∇∇�, for each generic variable � at each control volume. It is
also necessary to update the values of these matrices for the ghost control volumes in every
iteration. This means increasing the communication overload from 4 double-precision values to
13 double-precision values per degree of freedom per ghost (or overlapping) control volume.
To overcome this problem a new correction term to Equation (11) is proposed. Regarding
the integral form of the generic transport equation (and the modi�ed form of the continuity
equation which will be discussed later), ∇� always appears in the form of n̂ · ∇�. Using
Equation (7), one could say

n̂ · ∇�ip = n̂ · [∇�m +R · ∇∇�m] (12)

For a smooth function of �(t; xi), one could switch the vectors ∇ and n̂ and obtain

n̂ · ∇�ip = n̂ · ∇�m +R · @∇�
@n

∣∣∣∣
m

(13)

In a compressible �ow where no shockwave occurs in the �ow �eld, the gradient of all
primitive variables are de�ned and are continuous for every point of the �ow �eld. Therefore,
all primitive variables are smooth functions of space.
The orthogonal decomposition of @∇�

@n |m along D and normal to D yields

@∇�
@n

∣∣∣∣
m
=
[
d̂ · @∇�

@n

∣∣∣∣
m

]
d̂+

[
ê · @∇�

@n

∣∣∣∣
m

]
ê (14)

or

@∇�
@n

∣∣∣∣
m
=
(∇�p − ∇�u)

D · n̂ +
[
ê · @∇�

@n

∣∣∣∣
m

]
ê (15)

where d̂ is the unit vector along D and ê is an appropriate unit vector normal to D in general
three-dimensional space. The �rst term of the right-hand side of Equation (15) is calculated
using the available information, i.e. the values of the gradient of the generic variable � at
the centre of each control volume. The calculation of the second term still requires ∇∇�.
However, for closely orthogonal grids, in which the relation D ‖ n̂ is approximately valid,
the second term is negligible. It is worth mentioning here that even for grids with arbitrary
polyhedral control volumes with high grid quality, e.g. Delauney triangles or tetrahedra, it is
most likely that the above-mentioned condition applies. Therefore,

@∇�
@n

∣∣∣∣
m

≈ (∇�p − ∇�u)
D · n̂ (16)

This suggests that the following approximation is the most accurate formula using the available
information:

∇�ip =
1
2
(∇�p +∇�u) +R · (∇�p − ∇�u)

D · n̂ n̂ (17)

Bear in mind that the cross di�usion part of the correction term, i.e. the projection of ∇∇�
on the control surface, is neglected not because it is negligible, but because its inner product
with n̂ is always zero and the gradient term always appears in the form of inner product
with n̂. It is worth mentioning that the size of the correction terms in Equations (7) and (17)

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



598 S. A. M. KARIMIAN AND A. G. STRAATMAN

depend on the size of R. In other words, in an irregular grid where the mid-point m does
not coincide with the integration point ip (the size of R is not zero), the correction terms in
these two equations are activated to maintain the accuracy.

3.3. Gradient reconstruction

To implement Equations (7), (9) and (17) in the discretization process, we need to reconstruct
the gradient �eld of the generic variable �. There are two methods available for determining
the gradient �elds: the least squares method or implementation of the divergence theorem.
The least squares method is based on the idea that a correct gradient �eld at a point p in

Figure 2 must satisfy the following equation for every point u in its close vicinity:

∇�p ·Di=�ui − �p (18)

For an N -edged polyhedral control volume, the above equation forms N constraints on the
gradient �eld ∇�p. The minimum number of constraints is always larger than the number of
dimensions, i.e. three constraints for triangular grids in two dimensions and four for tetrahedral
grids in three dimensions. This suggests use of the least squares method to determine the
gradient �eld. This method, however, is not appropriate for control volumes of high aspect
ratio, which occur in near-wall regions of viscous �ows, since the constraints are highly
dependent on the shape of the control volumes [21, 22].
Another method is based on the implementation of the divergence theorem and the mean-

value theorem

∇�p=
∑n

ip=1 �ipn̂ip dSip
	V

(19)

P
U2

U1

UN

U
4

U
3

DN

D4

D3

D2

D1

P
U2

U1

UN

U
4

U
3

DN

D4

D3

D2

D1

Figure 2. A control volume with the neighbours in its vicinity.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



A PARALLEL UNSTRUCTURED NAVIER–STOKES SOLVER 599

where �ip is calculated using Equation (7) and dSip is the area of the control surface. This
method is independent of the shape of the control volume. However, in this equation ∇� is a
function of �ip. On the other hand, the calculation of �ip using Equation (7) is based on ∇�p
and ∇�u. Therefore, to ensure good accuracy, ∇� must be calculated in an iterative manner.
Experience shows that for a smooth �eld, two to four iterations give satisfactory accuracy.

3.4. Discretization procedure

As mentioned in the introduction to this section, an unstructured �nite-volume procedure was
used to discretize the governing equations for the three-dimensional code described herein.
Application of this procedure over a general �nite-volume results in mass equations of the
form

n∑
ip=1

ṁip = 0 (20)

and transport equations of the form:

�cv
@�cv
@t
	V +

n∑
ip=1

ṁip�ip −
n∑

ip=1
��ip∇�ip · n̂ip dSip =Qcv� 	V +

n∑
ip=1

Qip
� · n̂ip dSip (21)

Here, 	V is the volume of the control volume, a sub or superscript ip indicates the values
at the integration points and a sub or superscript cv indicates the values at the centre of the
discrete �nite volume. As can be seen, the discrete counterpart of Equations (3) and (4) �ts
into the discrete form of the generic transport Equation (21) by replacing � with V or T , ��

with � or k=cp, Qcv� with zero and �nally Qip
� with −PipI or zero, respectively, where I is the

Kronecker delta.
The three terms on the left-hand side of Equation (21) are called transient, convection and

di�usion terms, respectively, and the right-hand side of this equation consists of volumetric
and facial source terms. Transient terms have been discretized using the implicit three time-
level approach described by Ferziger and Peri�c [23]. Using this method, there is no numerical
restriction on the time-step size and thus, the time-step size can be set based on the desired
resolution of the physical problem being considered.
Gradients for the di�usion terms have been discretized using the method described in

Section 3.2. Using Equation (9), each gradient term is cast as the sum of a dominant implicit
term and an explicit correction, which ensures second-order accuracy. Convective �uxes are
approximated using one of a number of Total Variation Diminishing (TVD) [24] schemes.
The implementation of the TVD schemes follows the approach described by Darwish and
Moukalled [25], which is based on the same computational molecule considered herein, i.e.
only nodes adjacent to the face under consideration are used. The method is second-order
and is implemented using the deferred-correction approach [20] whereby a simple upwinding
scheme forms the implicit part, which is then corrected using either the well-known central
di�erence scheme (CDS) [23], SUPERBEE [26] or MUSCL [27].
While volumetric source terms are simply integrated over the control volume in question,

the pressure source term is treated as a facial force and integrated face-by-face to obtain
implicit and explicit fragments to be added into the discrete equations. In the present treat-
ment, the mass and momentum equations are solved as a direct coupled set of equations and
thus, coupling between the pressure and velocity �elds is implicit in the solution procedure.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



600 S. A. M. KARIMIAN AND A. G. STRAATMAN

The scheme proposed by Rhie and Chow [28] is used to maintain coupling between the
pressure and velocity �elds during the solution procedure.
The discretization algorithm consists of a main inner loop which cycles through all control

volumes, and then within each control volume computes the source terms and �uxes face-by-
face to form the complete discrete equation. If a face is adjacent to a boundary, the appropriate
condition is imposed by integrating the e�ect of the boundary condition into discrete equation
for the volume. This is done by writing a simpli�ed discrete equation for the variable at the
boundary in terms of the integration point and the node at the control volume centre and then
absorbing the boundary equation into the discrete equation for the control volume.

4. PARALLEL IMPLEMENTATION

The code is written in Fortran 90 to take advantage of the �exibility of this language in terms
of runtime memory allocation, replacement of array-based DO-loops with simpler general
array syntaxes and better compile-time optimizations. Moreover, the code is constructed on
the PETSc framework using a single-program-multiple-data (SPMD) parallel model to run on
distributed memory parallel computer architectures. PETSc, a portable extensible toolkit for
scienti�c computation, is a suite of data structures and routines that provide the building blocks
for the implementation of large-scale application codes on parallel (and serial) computers [17].
PETSc has been implemented as a sparse matrix solver as well as an interface library layer
for MPI [29], that is to say the message passing is performed by PETSc library subroutines.
In a SPMD parallel model, each process runs the same program to perform computations

on its own subset of the global �nite-volume database. The problem domain is divided into
a set of N subdomains (domain decomposition). Figure 3 shows a schematic of the domain
decomposition and details of the control volumes in the vicinity of the border of two sub
domains. To solve the governing equations, a global set of linear equations is constructed.
The global linear system is divided into N portions of rows. In the implicit �ux calculation
phase, each process constructs and saves the equations for its own set of local control volumes.
As Figure 3 suggests, an equation in one process may have an implicit coe�cient for a control
volume, as a neighbour, located in another process. The constructed global linear system is
solved using a preconditioned Krylov subspace method.
The implicit coe�cients in the discrete form of the continuity equations for a control

volume are calculated based on the latest values of the diagonal coe�cients of the discrete
form of the momentum equations for that control volume and its neighbours (see Reference
[28]). Moreover, the explicit correction terms in the discrete equations of a control volume are
functions of the old values of the primitive variables and their �rst derivatives of that control
volume and its neighbours. Therefore, each subdomain keeps an up-to-date virtual copy, as
a ghost control volume, of the control volumes belonging to other subdomains and located
at its borders with those subdomains. The main purpose of de�ning ghost control volumes is
to make a communication chain between subdomains so that a �ow of information can be
maintained between the control volumes in the vicinity of the subdomain boundaries. Here it
is obvious that a large computational molecule would lead to a much higher number of ghost
control volumes, owing to the larger overlap required between the sub-domains, resulting in
much higher communication overhead at each location where information update is required.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



A PARALLEL UNSTRUCTURED NAVIER–STOKES SOLVER 601

Subdomain 2Subdomain 3

Subdomain 0 Subdomain 1

Figure 3. A domain decomposed into four subdomains.

The sequence of computations and communications in each iteration is as follows:

• Gradient reconstruction:
— calculate new gradient vectors,
— update the gradient vectors for the ghost control volumes,

• Implicit �ux calculation:
— construct the transport equations for u; v; w and T ,
— update the diagonals, ax; ay and az for the ghost control volumes,
— construct the continuity equations to be solved for p,

• Linear system solution:
— solve the equations for F = {p; u; v; w} and for T ,
— update the primitive variables for ghost control volumes,
— calculate the mass �ux at the integration points.

For a �xed size problem, domain decomposition is performed in a preprocessing stage.
Load balancing over a homogeneous bank of processors is achieved by making all subdomains
approximately the same size. In this work, the unstructured grid is partitioned in equally sized
subdomains using MeTiS [30]. Each local control volume is renumbered locally. To enhance
the single processor e�ciency, the local numbering of control volumes is based on the topo-
logical vicinity of the control volumes. The local numbering of vertices follows an ascending
pattern based on the numbering of the local control volumes. A separate �nite-volume database
is generated for each subdomain, to avoid serial I=O and its communication overhead. After
performing computations, each process writes its own portion of the results to a separate out-
put �le. The serial post-processor reads one output �le per process. This signi�cantly reduces
the communication overhead of a serial I=O and its master–slave parallel model.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



602 S. A. M. KARIMIAN AND A. G. STRAATMAN

Three sets of vectors are de�ned in the code: vector of primitive variables, vector of
gradients and vector of diagonal coe�cients. The importance of storing the data items in the
form of these three vectors is to enhance the communication e�ciency. Three ghost update
levels are recognized in each iteration (see the sequence of the operations above): gradient
vector update, matrix diagonals update and primitive variables update. To assist PETSc with
generating a communication pattern with large packs of data, all vectors that update at the
same ghost-data-update level are interlaced in a single vector. In this way, a larger number
of ghost data items belonging to the same process is grouped together. An enhancement of
35% in the performance of the node-to-node communication is gained using this approach to
data packing.

5. NUMERICAL PROCESS

Accurate results are required at the end of each time-step. Due to the non-linear nature of
the Navier–Stokes equations, discretization techniques used for numerical analysis require
methods of linearization. In the approach used in ParTISUN, the implicit convection term in
its integral form is (iteratively) converged to a small tolerance by deferring the mass �ux
and performing non-linear iterations within each time-step. Therefore, each time-step consists
of 10–50 non-linear iterations, depending on the size of the problem. This is a conventional
approach and the method belongs to a family of methods often called non-linearly consistent.
The method operates on the basis that the converged solution for the previous time-step serves
as the initial guess for the next time-step. Within each time-step, the solver returns a fully
converged solution to the linearized problem until the linearized problem approximates the
actual non-linear problem to a suitable degree of accuracy. The accuracy of the solution is
determined by substituting the solution for the previous iteration in the next linear system and
calculating the second norm of the residual vector (non-linear residual). For the discretization
methods used in this work, a value of 10−6 is deemed satisfactory for the non-linear residual.
In each non-linear iteration, the system of linear equations is solved using a combination

of a Krylov subspace method and a preconditioner. The default setting in PETSc for linear
system solver is restarted GMRES, preconditioned with block Jacobi with one block per
processor, each of which is solved with ILU(0) [31]. There are more than ten other Krylov
subspace methods available in PETSc (refer to Reference [17]). However, our experience
shows that, for an identical convergence=stop criteria, using BiCGSTAB method with the
default preconditioner needs the minimum number of solver iterations and leads to a more
stable non-linear convergence.
The convergence in the linear solver is decided by two quantities: the relative decrease

of the residual norm, rtol and the absolute size of the residual norm, atol. Moreover, the
linear solver stops after kmax iterations [31]. Obtaining an exact (fully converged) solution for
the equations at each non-linear iteration is costly and only necessary near the convergence
of the time-step. Therefore, by de�ning the convergence=stop criteria of the linear system
solver as a function of the non-linear residual, the link between the non-linear algorithm
and the linear solver is optimized, which in turn enhances the computational performance by
saving a signi�cant computational e�ort at the beginning of each time-step. This approach is a
dynamic version of that implemented by Demirdzic et al. [14] in a similar non-linear method
and that implemented by Gropp et al. [7] in the well-known inexact Newton–Krylov method.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



A PARALLEL UNSTRUCTURED NAVIER–STOKES SOLVER 603

In the approach implemented in References [7, 14], a constant inexact convergence criteria is
de�ned for the linear solver at all non-linear iterations, for example rtol = 10−2 or rtol = 10−3

in Reference [14] or kmax =10–50 in Reference [7], whereas in the current approach a more
accurate solution is dynamically demanded from the linear solver as the non-linear residual
decreases. A speedup of upto four times has been achieved in this work by varying rtol from
5:0× 10−1 to 10−2 as a linear function of the non-linear residual. In general, the values of the
upper and lower limits are not global for all problems and may vary based on the complexity
of the �ow.

6. VALIDATION AND APPLICATIONS

All the tests reported herein have been carried out using the Hammerhead cluster in SHAR-
CNET. Hammerhead is a cluster of 27 computer nodes of Compaq Alpha ES40. Each node
contains four 833MHz Alpha processors with a shared memory of 4GB. The nodes are con-
nected by a fat-tree with Quadric switches of a sustainable transfer rate of 350MB=s (this is
the net transfer rate after protocol, i.e. the rate of user data movement and overhead for the
protocol is already taken into account).

6.1. Discretization accuracy and grid convergence

6.1.1. Lid-driven cavity. To study the accuracy and robustness of the gradient formula, the
�ow inside a lid-driven cavity has been studied using four grids with similar grid size and
di�erent grid quality. Figure 4(a) shows an outline for the geometry. Two factors decrease
the grid quality, the size of R and non-orthogonality. As Figure 5 shows, Grid B, Grid C and
Grid D have low grid qualities with variying grid density and angle that lead to non-orthogonal
lines with considerable displacement of the midpoints with respect to the integration points.
The two-dimensional �ow was simulated by applying symmetry boundary conditions on the
z edges of the domain. Except for the symmetry walls, no-slip boundary conditions were
applied on the remaining walls. The steady state solution was obtained for Re=1000 and
Re=3200 with a maximum absolute di�erence of �st = 10−4 for the steady state convergence
and a maximum non-linear residual of � = 10−6. The velocity pro�les along the horizontal

X

Y
U

C
L1

CL2

X

Y

b

U

CL1
CL2

(a) (b)

Figure 4. A schematic of the geometry for: (a) the lid-driven cavity; and
(b) the inclined lid-driven cavity.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



604 S. A. M. KARIMIAN AND A. G. STRAATMAN

X

Y

-0.5 -0.25 0 0.25 0.5
-0.5

-0.25

0

0.25

0.5
Grid A Grid B

Grid C Grid D

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 5. Lid-driven cavity: orthogonal and non-orthogonal grids.

and vertical centrelines are shown for two �ows of Re=1000 and Re=3200 in Figure 6.
Comparison of the results with that of Ghia et al. [32] shows that the new proposed gradient
formula preserves the accuracy even in the case of a low quality grid. It is evident from
Figure 7 that the e�ect of the grid quality on the convergence history of the code is not
signi�cant. This indicates the robustness of the method, even when the quality of the grid
is low.

6.1.2. Inclined lid-driven cavity. To furthur validate the accuracy of the interpolation and
gradient formulae, the �ow inside an inclined lid-driven cavity has been studied. An outline
of the geometry is shown in Figure 4(b). An inclination angle of b=30◦ is chosen for this

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



A PARALLEL UNSTRUCTURED NAVIER–STOKES SOLVER 605

U

Y

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

V

0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

0.4

U

Y

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Grid A
Grid B
Grid C
Grid D
Ghia et al.

X

V

0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Grid A
Grid B
Grid C
Grid D
Ghia et al.

Grid A
Grid B
Grid C
Grid D
Ghia et al.

Grid A
Grid B
Grid C
Grid D
Ghia et al.

(a)

(b)

Figure 6. Lid-driven cavity: (a) velocity pro�les along the centrelines for Re=1000; and (b) velocity
pro�les along the centrelines for Re=3200.

test case. Non-uniform grids of 40× 40×2 0, 80× 80× 40 and 120×120×60 with higher grid
density near the walls were employed. The two-dimensional �ow was simulated by applying
the same boundary conditions as the above test case. The �ow was computed for Reynold’s
numbers of Re=100 and Re=1000. In both cases, 32 processors were used for the two
coarser grids and 64 processors for the �nest grid. The steady state solution was obtained
with a maximum absolute di�erence of �st = 10−4 for the steady state convergence and a
maximum non-linear residual of �=10−6. The total number of iterations to obtain a steady
state solution on the �nest grid was 30 for Re=100 and 67 for Re=1000. To validate the

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



606 S. A. M. KARIMIAN AND A. G. STRAATMAN

itr. itr.

E
st

5 10 15 20 25 30
10-4

10-3

10-2

10-1

100

101

E
st

10-4

10-3

10-2

10-1

100

101

Grid A
Grid B
Grid C
Grid D

Grid A
Grid B
Grid C
Grid D

100 200

(a) (b)

Figure 7. Convergence history: (a) Re=1000; and (b) Re=3200.

accuracy of the solution and the grid convergence, the velocity pro�les along the horizontal
and inclined centrelines are compared to those of Reference [33]. Figure 8 shows the velocity
pro�les along the centrelines CL1 and CL2 of Figure 4(b). For the case of Re=100 a slight
grid dependency is observed for grid 40 × 40 × 20, whereas the grid dependency on the
same grid for the case of Re=1000 is not negligible. The pro�les obtained from a grid of
120× 120× 60 coincide almost exactly with the pro�les obtained by Demird�zi�c et al. [33] on
a grid of 320× 320, thereby con�rming the accuracy of the interpolation and grid calculation
formulae implemented in the discretization of the equations in this work.

6.2. Parallel performance

Three-dimensional, time-dependent �ow around a circular cylinder mounted in a channel
serves as the test case to describe and assess parallel performance of the code. Figure 9
gives a schematic of the computational domain and shows the positioning of the cylinder
in the domain. No-slip=zero-penetration boundary conditions were applied to the body of the
circular cylinder and on all walls of the channel. At the domain outlet, a zero-normal gradient
condition was applied to all variables, with the exception of pressure, which was set to an
average value of zero. At the inlet, a uniform axial velocity was speci�ed (with zero trans-
verse components) and pressure was extrapolated. A Reynolds number of Re=�UD=�=200
was simulated for all of the cases described below, where U is the inlet velocity and D is
the diameter of the cylinder. The domain was discretized using unstructured hexahedral grids
with 711 160 (Grid A) or 173 460 (Grid B) control-volumes. This translates to systems of
equations with 2 844 640 or 693 840 unknowns, respectively.
Before describing the code performance, plots are shown to illustrate the results of the tran-

sient �ow �eld for the problem under consideration. Figure 10 shows the computed streamlines
for the �ow around the circular cylinder. The �ow is seen to form the familiar von Karman
street behind the cylinder, although the vortex street is slightly supressed due to the proximity

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



A PARALLEL UNSTRUCTURED NAVIER–STOKES SOLVER 607

X*

Y
*

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

U

Y
*

-0.2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Y
*

0

0.2

0.4

0.6

0.8

1

Demirtzic et al
40x40x20
80x80x40
120x120x60

X*

U

-0.2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

X*

V

-0.1

-0.05

0

0.05

0.1

Demirtzic et al
40x40x20
80x80x40
120x120x60

Demirtzic et al.
40x40x20
80x80x40
120x120x60

V

-0.02

-0.01

0

0.01

0.02
Demirtzic et al.
40x40x20
80x80x40
120x120x60

(a)

(b)

(c)

Figure 8. Inclined lid-driven cavity: (a) Grid for 40× 40× 10; (b) velocity pro�les along the centrelines
for Re=1000; and (c) velocity pro�les along the centrelines for Re=100.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



608 S. A. M. KARIMIAN AND A. G. STRAATMAN

10D
5D

30D

10
D

D

5D

Figure 9. A geometry outline of the �ow around a circular cylinder.

X

0

10

20

30

Y

-5

0

5

Z

-10
-5

0

Figure 10. Computed streamlines for the �ow around the circular cylinder.

of the cylinder walls. Figure 11 compares the computed lift and drag force versus time for
solutions computed on three di�erent domain decompositions. The results are seen to be virtu-
ally identical validating the numerical consistency of the code. Since the focus of the present
paper is on the performance of the CFD code, a more detailed description of the physics of
this test case is omitted.
Two factors are used [7] to describe the performance of the parallel code: (i) parallel

scalablity, i.e. time per iteration in inverse proportion to the number of processors, and
(ii) algorithm scalability, i.e. the required number of non-linear iterations with increased num-
ber of processors.
To study the performance of the parallel code in obtaining the solution, the domain was

divided into N subdomains, where 16N696 was considered. As an example, Figure 12

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



A PARALLEL UNSTRUCTURED NAVIER–STOKES SOLVER 609

t

L

0 2 4 6 8 10

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

t

D

0 2 4 6 8 10

-7

-6.8

-6.6

-6.4

-6.2

-6

-5.8

64 Processors

16 Processors

4 Processors
64 Processors

16 Processors

4 Processors

Figure 11. Evolution of lift and drag forces versus time for the �rst 100 time-steps, Re=200.

X

0

10

20

30

Y

-5

0

5

Z

-5 0
5

X

0

10

20

30

Y

-5

0

5

Z

-5 0
5

X

0

10

20

30

Y

-5

0

5

Z

-5 0
5

Processor 2 Processor 3

Processor 0 Processor 1

X

0

10

20

30

Y

-5

0

5

Z
-5 0

5

Figure 12. Grid partitioning into four subdomains.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



610 S. A. M. KARIMIAN AND A. G. STRAATMAN

Table I. Domain decomposition for Grid A.

No. of No. of Average no. Comm. Load
proc. local CV of ghost CV imbalance (%) imbalance (%)

2 355 580 6320 0.00 0.00
4 177 790 5912 11.79 0.00
8 88 895 5272 18.33 0.00
16 44 447 4125 22.45 0.00
32 22 223 3178 16.23 0.00
64 11 112 2203 15.65 0.00
96 7408 1780 17.49 0.00

Table II. Domain decomposition for Grid B.

No. of No. of Average no. Comm. Load
proc. local CV of ghost CV imbalance (%) imbalance (%)

2 86 730 1500 0.00 0.00
4 43 365 2296 38.47 0.00
8 21 683 2134 16.79 0.00
16 10 841 1763 11.86 0.00
32 5421 1251 12.24 0.00
64 2710 856 15.79 0.00
96 1355 701 16.33 0.00

shows the domain decomposition for N =4. Tables I and II show the statistics of all the
domain decompositions considered for the parallel performance assessment of Grid A and
Grid B, respectively. The results of the transient calculations were written to �les after each
time-step and thus the �le I=O is included in all measurements of time. The e�ciency and
parallel speedup, which are indicators of the parallel scalability, are determined using parallel
wall-clock time, total CPU time and the time per non-linear iteration. The parallel wall-clock
time is de�ned as the maximum wall-clock time among all processors. The total CPU time
is the aggregate CPU time of all processors spent on computations, communications and �le
I=O. The time per non-linear iteration is de�ned as the wall-clock time divided by the total
number of non-linear iterations. The time-per-iteration is used to study the parallel scalibility
without the e�ect of algorithm scalability. The di�erence between per-processor CPU time
and the wall-clock time for each process is due to the idling time, the time each process is
waiting for a communication taking place, the time a process is waiting for other processes at
other types of synchronization points or the time a process waits for the �le server to respond.
The parallel speedup for n processor is de�ned as

Sp(n)=
T1
Tn

(22)

where T1 is the time for a single processor run and Tn is the time for a run with n processors.
The e�ciency is determined by the following relation:

�(n)=
T1
nTn

(23)

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



A PARALLEL UNSTRUCTURED NAVIER–STOKES SOLVER 611

Table III. Execution times (Grid A).

CPU WC Iteration

No. of proc. Time (s) �cpu (%) Time (s) �wc (%) Idle (%) No. t=itr (s) �itr (%)

1 75 652 100 75 675 100 0 171 442.54 100
2 118 469 64 68 398 55 13 253 270.35 82
4 122 839 62 30 751 62 0 220 139.78 79
8 134 808 56 17 046 55 1 239 71.32 78
16 115 205 66 7259 65 1 214 33.92 82
32 118 361 64 3729 63 1 232 16.07 86
64 118 984 64 1876 63 1 245 7.66 90
96 114 053 66 1200 66 1 242 4.96 93

Table IV. Execution times (Grid B).

CPU WC Iteration

No. of proc. Time (s) �cpu (%) Time (s) �wc (%) Idle (%) No. t=itr (s) �itr (%)

1 12 807 100 12 815 100 0 127 100.91 100
2 13 361 96 6955 92 4 126 55.20 91
4 12 903 99 3254 98 1 126 25.83 98
8 13 424 95 1686 95 0 127 13.28 95
16 13 840 93 870 92 1 133 6.54 96
32 13 945 92 443 90 2 137 3.24 97
64 14 063 91 220 91 0 136 1.62 97
96 13 188 97 143 93 4 136 1.05 100

Three factors adversely a�ect the e�ciency based on wall-clock time �wc: the idling times,
the communication pattern and the algorithm scalability. The percentage of the idling time
with respect to the wall-clock time in Tables III and IV suggests that, except for the
case of 2 processors, the idling time is negligible. One should expect such a conclusion
on the basis of the zero load imbalance indicated in Tables I and II. The communication
imbalance is de�ned as the standard deviation of the number of ghost control volumes of the
subdomains divided by the number of processors. A high quality communication pattern can
compensate such an imbalance and result in a minimum waiting time at the ghost-data-update
points. From Tables III and IV it is also evident that the communication pattern generated
by PETSc has compensated the communication imbalance. However, this is not the case for
the two-processor execution, since in this case there is just one node-to-node communication
connection and one process has to wait for the other to complete the communication. As can
be observed from Figure 13, the parallel e�ciency of ParTISUN remains almost constant over
a wide range of N , regardless of the size of problem. The trend of increasing e�ciency with
the number of processors �itr on Grid A can be iterpreted in two ways:

• By increasing the number of processors, the average number of ghost control volumes
decreases for a �xed size problem. Also, because the clusters used operate on a fat-tree
network, there is almost no limitation in communication bandwidth as the number of
processors increases. This suggests a signi�cant decrease in the communication time,
speci�cally at the communication bottlenecks, i.e. ghost-data-update points.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



612 S. A. M. KARIMIAN AND A. G. STRAATMAN

Number of Processors

E
ff

ic
ie

n
cy

0 20 40 60 80 100
0

20

40

60

80

100

Grid A Grid B

Number of Processors

E
ff

ic
ie

n
cy

0 20 40 60 80 100
0

20

40

60

80

100

Per Iteration

WC

CPUPer Iteration

WC

CPU

Figure 13. Parallel e�ciency for Grid A and Grid B.

• The decreasing size of the subdomains with the number of processes results in a better
�tting of data in the higher memory levels. This can be clearly concluded by observing
the trend of increasing �itr in Figure 13. This fact has been considered as a drawback
of a performance study in some other literature [34]. However, in the authors’ opinion,
if one’s goal in single processor performance is to use the higher memory levels more
often and to avoid transferring data from lower levels as much as possible, this fact must
be considered an advantage of multiprocessing, i.e. if wall-clock time, which is directly
related to the computation cost, is the key factor of comparison, everything that helps
to reduce it must be taken into account.

The condition for algorithm scalability is that the convergence rate must be essentially
independent of the number of processors. Therefore, the gap between �wc and �itr is the
result of algorithm scalability. The number of non-linear iterations changes from about 170
for the serial run to about 220 for the parallel run on Grid A and from 127 to 137 on
Grid B. However, it remains almost independent of the number of processors once it is
running in parallel. The main reason for this jump in the number of iterations lies in the fact
that the solver in PETSc implements di�erent preconditioning methods for serial and parallel
computations. However, as expected, Figure 14 shows that this gap does not a�ect the parallel
scalability signi�cantly; it just changes the slope of the speedup diagram. As shown in this
�gure, ParTISUN is scalable to within the limit of available computing resources for small
size or large size problems, despite the fact that I=O is included in all time measurements.
Note that in a scalable program, the computation time per iteration is constant when the

size of the problem and the number of processors are scaled proportionally. To show the
scalability from this point of view, the computation time per iteration of Grid A is compared
with its proportional counterpart on Grid B in Table V. Note that Grid A is almost four times
larger than Grid B. From Table V, it is evident that the scalability increases with the number

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



A PARALLEL UNSTRUCTURED NAVIER–STOKES SOLVER 613

Number of Processors

S
p

ee
du

p

0 20 40 60 80 100
0

20

40

60

80

100

Number of Processors

S
p

ee
du

p

0 20 40 60 80 100
0

20

40

60

80

100

Ideal Speedup

CPU

WC

Per Iteration

Ideal Speedup

CPU

WC

Per Iteration

Grid A Grid B

Figure 14. Parallel speedup using di�erent timing schemes.

Table V. Scalability based on problem size.

Grid A Grid B

No. of Time per No. of Time per
proc. iteration proc. iteration Scalability (%)

4 139.78 1 100.91 72
8 71.32 2 55.20 77
16 33.92 4 25.83 76
32 16.07 8 13.28 83
64 7.66 16 6.54 85

of processors. This indicates that ParTISUN functions more e�ciently for larger problems
with a larger number of processors.

7. CONCLUSION

The discretization details and performance of a three-dimensional, unstructured �nite-volume
code (ParTISUN) is presented in this work. The accuracy of the proposed discretization
method was veri�ed by running standard bench-mark test cases for non-orthogonal, non-
uniform grids. The parallel performance of the code was described by considering a com-
plex, three-dimensional, transient problem. The code was shown to scale linearly in both
per-iteration performance and overall performance on two di�erent density grids. The code
was shown to be e�cient for large size problems and large numbers of processors.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



614 S. A. M. KARIMIAN AND A. G. STRAATMAN

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the �nancial support from the Natural Science and Engineering
Research Council (NSERC) and from SHARCNET. The authors would also like to thank Baolai Ge
and John Morton from SHARCNET for their valuable assistance.

REFERENCES

1. SHARCNET Homepage. http:==www.sharcnet.ca, 2005.
2. Baliga BR, Patankar SV. A control-volume �nite element method for two-dimensional �uid �ow and heat
transfer. Numerical Heat Transfer 1983; 6:245–261.

3. Schneider GE, Raw MJ. Control-volume �nite-element method for heat transfer and �uid �ow using co-located
variables-1. Computational procedures. Numerical Heat Transfer 1987; 11:363–390.

4. Tai CH, Zhao Y. Parallel unsteady incompressible viscous �ow computations using an unstructured multigrid
method. Journal of Computational Physics 2003; 192:277–311.

5. Anderson WK, Bonhaus DL. An implicit upwind algorithm for computing turbulent �ows on unstructured grids.
Computers and Fluids 1994; 23:1–21.

6. Anderson WK, Rausch RD, Bonhaus DL. Implicit=multigrid algorithms for incompressible turbulent �ows on
unstructured grids. Journal of Computational Physics 1996; 128:391–408.

7. Gropp WD, Kaushik DK, Keyes DE, Smith BF. High-performance parallel implicit CFD. Parallel Computing
2001; 27:337–362.

8. Gerhold T, Friedrich O, Evans J, Galle M. Calculation of complex three-dimensional con�guration employing
the DLR-TAU-Code. 35th Aerospace Sciences Meeting and Exhibit, 1997. AIAA-97-0167.

9. Aumann P, Barnewitz H, Schwarten H, Becker K, Heinrich R, Roll B, Galle M, Kroll N, Gerhold Th,
Schwamborn D, Franke M. MEGAFLOW: parallel complete aircraft CFD. Parallel Computing 2001; 27:
415–440.

10. Dolean V, Lanteri S. Parallel multigrid methods for the calculation of unsteady �ows on unstructured grids:
algorithmic aspect and parallel performances on clusters of PCs. Parallel Computing 2004; 30:503–525.

11. Koubogiannis DG, Poussoulidis LC, Rovas DV, Giannakoglou KC. Solution of �ow problems using unstructured
grids on distributed memory platforms. Computer Methods in Applied Mechanics and Engineering 1998;
160:89–100.

12. Grismer MJ, Strang WZ, Tomaro RF, Witzeman FC. Cobalt: a parallel, implicit, unstructured Euler=Navier–
Stokes solver. Advances in Engineering Software 1998; 29(3–6):365–373.

13. Lien F-S. A pressure-based unstructured grid method for all-speed �ows. International Journal for Numerical
Methods in Fluids 2000; 33:355–374.

14. Demird�zi�c I, Muzaferija S. Numerical method for coupled �uid �ow, heat transfer and stress analysis using
unstructured moving meshes with cells of arbitrary topology. Computer Methods in Applied Mechanics and
Engineering 1995; 125:235–255.

15. Mathur SR, Murthy JY. A pressure-based method for unstructured meshes. Numerical Heat Transfer, Part B
1997; 31:195–215.

16. Basara B. Employment of the second-moment turbulence closure on arbitrary unstructured grids. International
Journal for Numerical Methods in Fluids 2004; 44:377–407.

17. Balay S, Buschelman K, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H. PETSc
Homepage, 2001.

18. van der Vorst HA. BiCGSTAB: a fast and smoothly converging variant of bicg for the solution of nonsymmetric
linear systems. SIAM Journal on Scienti�c and Statistical Computing 1992; 13:631–644.

19. Saad Y, Schultz MH. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear
systems. SIAM Journal on Scienti�c and Statistical Computing 1986; 10:36–52.

20. Kholsa PK, Rubin SG. A diagonally dominant second-order accurate implicit scheme. Computers and Fluids
1974; 2:207–209.

21. Blazek J. Computational Fluid Dynamics: Principles and Applications. Elsevier: Amsterdam, 2001.
22. Barth TJ. Aspects of unstructured grids and �nite-volume solvers for the Euler and Navier–Stokes equations,

special course on unstructured grid for advection dominated �ows. Technical Report 787, AGARD, 1992.
23. Ferziger JH, Peri�c M. Computational Methods for Fluid Dynamics (2nd edn). Springer: Berlin, 1997.
24. Harten A. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics 1983;

49:357–393.
25. Darwish MS, Moukalled F. TVD schemes for unstructured grids. International Journal of Heat and Mass

Transfer 2003; 46:599–611.
26. Roe PL. Some contributions to the modeling of discontinuous �ows. Proceedings of the AMS=SIAM Seminar,

San Diego, 1983.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615



A PARALLEL UNSTRUCTURED NAVIER–STOKES SOLVER 615

27. Van Leer B. Towards the ultimate conservative di�erence scheme V. A second-order sequel to Godunov’s
method. Journal of Computational Physics 1979; 32:101–136.

28. Rhie CM, Chow WL. Numerical study of the turbulent �ow past an airfoil with trailing edge separation. AIAA
Journal 1983; 21(11):1525–1532.

29. Gropp W, Lusk E, Skjellum A. Using MPI: Portable Parallel Programming with the Message Passing
Interface (2nd edn). MIT Press: Cambridge, MA, 1999.

30. Karypis G, Kumar V. A fast and high quality scheme for partitioning irregular graphs. SIAM Journal on
Scienti�c Computing 1999; 20:259–392.

31. Balay S, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H.
PETSc users manual. Technical Report ANL-95=11—Revision 2.1.5, Argonne National Laboratory, 2004.

32. Ghia U, Ghia KN, Shin T. High-Re solutions for incompressible �ow using the Navier–Stokes equations and a
multigrid method. Journal of Computational Physics 1982; 48:387–411.

33. Demird�zi�c I, Lilek �Z, Peri�c M. Fluid �ow and heat transfer test problems for non-orthogonal grids: bench-mark
solutions. International Journal for Numerical Methods in Fluids 1992; 15:329–354.

34. Baker L, Smith BJ. Parallel Programming. McGraw-Hill: New York, 1996.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:591–615


